The Structure of Spaces of R-places of Rational Function Fields over Real Closed Fields
نویسنده
چکیده
For arbitrary real closed fields R, we study the structure of the space M(R(y)) of R-places of the rational function field in one variable over R and determine its dimension to be 1. We determine small subbases for their topology and discuss a suitable metric in the metrizable case. In the case of non-archimedean R, we exhibit the rich variety of homeomorphisms of subspaces that can be found in such spaces.
منابع مشابه
Metrizability of Spaces of R-places of Function Fields of Transcendence Degree 1 over Real Closed Fields
In this paper we discuss the question ”When do different orderings of the rational function field R(X) (where R is a real closed field) induce the same R-place?”. We use this to show that if R contains a dense real closed subfield R′, then the spaces of R-places of R(X) and R′(X) are homeomorphic. For the function field K = R(X) we prove that its space M(K) of R-places is metrizible if and only...
متن کاملar X iv : 0 80 3 . 06 76 v 1 [ m at h . A C ] 5 M ar 2 00 8 SPACES OF R - PLACES OF RATIONAL FUNCTION FIELDS
In the paper an answer to a problem ”When different orders of R(X) (where R is a real closed field) lead to the same real place ?” is given. We use this result to show that the space of R-places of the field R(Y ) (where R is any real closure of R(X)) is not metrizable space. Thus the space M(R(X, Y )) is not metrizable, too.
متن کاملFunctionally closed sets and functionally convex sets in real Banach spaces
Let $X$ be a real normed space, then $C(subseteq X)$ is functionally convex (briefly, $F$-convex), if $T(C)subseteq Bbb R $ is convex for all bounded linear transformations $Tin B(X,R)$; and $K(subseteq X)$ is functionally closed (briefly, $F$-closed), if $T(K)subseteq Bbb R $ is closed for all bounded linear transformations $Tin B(X,R)$. We improve the Krein-Milman theorem ...
متن کاملThe Real Holomorphy Ring and Sums of Powers in Rational and Elliptic Function Fields over The Field of Real Numbers
This thesis is devoted to a study of real holomorphy rings in R(x) and elliptic function fields R(x)( √ f(x)), f is a monic polynomial of degree 3 with no multiple roots in C over R and sums of powers in R(x). The objects of study are real valuation rings, real holomorphy rings and real places in the rational function fields R(x) and then investigate their extension to elliptic function fields ...
متن کاملHYPERTRANSCENDENTAL FORMAL POWER SERIES OVER FIELDS OF POSITIVE CHARACTERISTIC
Let $K$ be a field of characteristic$p>0$, $K[[x]]$, the ring of formal power series over $ K$,$K((x))$, the quotient field of $ K[[x]]$, and $ K(x)$ the fieldof rational functions over $K$. We shall give somecharacterizations of an algebraic function $fin K((x))$ over $K$.Let $L$ be a field of characteristic zero. The power series $finL[[x]]$ is called differentially algebraic, if it satisfies...
متن کامل